Magnetic resonance imaging of astronauts on the international space station and into the solar system

Publication: Canadian Aeronautics and Space Journal
7 May 2012

Abstract

The management of weightlessness-induced musculoskeletal deterioration, along with other medical issues, in astronauts on long-term space flights remains a primary problem to be solved before interplanetary travel becomes feasible. Finding ways to prevent or reduce these medical sequelae to acceptable levels by exercise and (or) pharmacological interventions will require intensive in situ imaging of the anatomical and physiological changes that occur in astronauts during space flight. A magnetic resonance imaging (MRI) instrument located on the International Space Station (ISS) would provide a broad range of detailed physiological information about the progression and status of medical alterations during long duration space flight. Advances in the understanding and treatment of weightlessness-induced musculoskeletal deterioration using MRI will interact with advances in the understanding and treatment of osteoporosis for patients on Earth. In addition to the significant basic research advancements that a space-based MRI would give, future inhabitants of the solar system beyond the Earth will need the medical imaging technology that would be pioneered with an ISS MRI. For example, astronauts who stay on the Moon for more than 30 days will require a “Level 4” standard of medical care that includes medical imaging, and the modern standard of care for diagnostic medical imaging in many cases is MRI. We reviewed a number of concepts for an ISS MRI ending with the favoured concept of the “compact MRI” that uses recent advances in MRI technology that are currently at the pre-market stage. A consideration of the steps needed to bring the new technology to realization as an ISS MRI showed that it is possible to complete the ISS MRI within the projected lifetime of the ISS. Building the ISS MRI would pave the way for significant new advances in MRI technology, a better understanding of space physiology, and its application both to Earth-bound use and to eventual use on other planetary bodies in the solar system.

Résumé

La gestion de la détérioration musculosquelettique induite par l'apesanteur chez les astronautes participant à des vols spatiaux de longue durée, comme bien d'autres problématiques médicales similaires, demeure un problème primordial à résoudre avant que les vols interplanétaires ne deviennent réalité. Pour trouver des façons de prévenir ou de réduire ces séquelles médicales à des niveaux acceptables au moyen d'exercices et/ou d'interventions pharmacologiques, il faudra pouvoir compter sur l'imagerie in situ intensive des changements anatomiques et physiologiques qui se manifestent chez les astronautes au cours de vols spatiaux. Un instrument d'imagerie par résonance magnétique (IRM) installé sur la Station spatiale internationale (ISS) pourrait fournir une foule d'informations physiologiques détaillées concernant la progression et le statut des transformations médicales subies durant les vols spatiaux de longue durée. Les progrès réalisés au niveau de la compréhension et du traitement de la détérioration musculosquelettique induite par l'apesanteur à l'aide de l'IRM auront également des répercussions sur les progrès réalisés dans les domaines de la compréhension et du traitement de l'ostéoporose pour les patients sur la Terre. En plus des progrès importants que l'instrument d'IRM spatial apporterait en recherche fondamentale, les futurs habitants du système solaire au-delà de la Terre pourront profiter de la technologie d'imagerie médicale ainsi développée avec l'avènement d'un instrument d'IRM conçu pour l'ISS. Par exemple, les astronautes qui demeureront sur le Lune pour plus de 30 jours devront posséder le “niveau 4” en termes de normes de soins de santé médicale qui comporte un volet d'imagerie médicale et, dans bien des cas, la norme aujourd'hui en matière de soins de santé en ce qui concerne l'imagerie médicale de diagnostique est l'IRM. On examine un certain nombre de concepts d'instrument d'IRM pour l'ISS pour finalement favoriser le concept d'instrument “IRM compact” intégrant les progrès récents réalisés dans la technologie d'IRM et qui sont présentement au stade de pré-commercialisation. L'analyse des étapes nécessaires pour mener la nouvelle technologie à terme dans le développement de l'IRM pour l'ISS montre qu'il est possible de compléter l'instrument à l'intérieur de la durée de vie projetée de l'ISS. La construction de l'IRM pour l'ISS ouvrirait la voie à de nouveaux progrès significatifs en technologie d'IRM, à une meilleure compréhension de la physiologie dans l'espace et à son application à la fois pour utilisation sur la Terre et pour utilisation éventuelle sur d'autres corps planétaires dans le système solaire.
[Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

References

Aggarwal M., Mori S., Shimogori T., Blackshaw S., and Zhang J.Three-dimensional diffusion tensor microimaging for anatomical characterization of the mouse brainMagnetic Resonance in Medicine2010Vol. 64249261
Buxton, R.B. 2002. Introduction to functional magnetic resonance imaging: Principles and techniques. Cambridge University Press, Cambridge.
Chiao L., Sharipov S., Sargsyan A.E., Melton S., Hamilton, K.M., and Dulchavsky S.A.Ocular examination for trauma; clinical ultrasound aboard the International Space StationThe Journal of Trauma: Injury, Infection and Critical Care2005Vol. 58885889
Cho Z.H., Park S.H., Kim J.H., Chung S.C., Chung S.T., Chung J.Y., Moon C.W., Yi J.H., Sin C.H., and Wong E.K.Analysis of acoustic noise in MRIMagnetic Resonance in Medicine1998Vol. 39317321
Bigelow: http://www.bigelowaerospace.com [accessed 14 February 2012].
Dulchavsky S.A., Sargsyan A.E., Garcia K.M., Shannon L., Melton S.L., Ebert D., and Hamilton D.R.Intuitive ultrasonography for autonomous medical care in limited-resource environmentsActa Astronautica2009Vol. 6815951607
Fincke E.M., Padalka G., Lee D., van Holsbeeck M., Sargsyan A.E., Hamilton D.R., Martin D., Melton S.L., McFarlin K., and Dulchavsky S.A.Evaluation of shoulder integrity in space: first report of musculoskelatal US on the International Space StationRadiology2005234319322
Fitts R.H., Riley D.R., and Widrick J.J.Physiology of a microgravity environment invited review: microgravity and skeletal muscleJournal of Applied Physiology200089823839
Gass, M.C., Karas, J.C., Dunbar, D.R., and Best, W.G. 1999. Atlas launch system mission planner's guide, International Launch Services.
Grigoriev, A.I., Potapov, A.N., Jones, J.A., Sullivan, T.A., and Scheuring, R.A. 2009. Medical support for interplanetary human spaceflights. In U.S. and Russian cooperation in space biology and medicine V: space biology and medicine, pp. 395–454, American Institute of Aeronautics and Astronautics, Reston, Virginia and Nauka Press, Moscow.
Haacke, E.M. (ed.) 2008. Current protocols in magnetic resonance imaging. Unlimited Learning Resources, Winston-Salem, North Carolina.
House, N.G., and Samarin, G.I. 2009. Biomedical research in spaceflight. In U.S. and Russian cooperation in space biology and medicine V: space biology and medicine, pp. 69–194, American Institute of Aeronautics and Astronautics, Reston, Virginia and Nauka Press, Moscow.
Huang L., Smith A., Cummings P., Kendall E.J., and Obenaus A.Neuroimaging assessment of memory-related brain structures in rat model of acute space-like radiationJournal of Magnetic Resonance Imaging2009Vol. 29785792
Huang L., Smith A., Badautc J., and Obenaus A.Dynamic characteristics of 56Fe-particle radiation-induced alterations in the rat brain: magnetic resonance imaging and histological assessmentsRadiation Research2010Vol. 173729737
Jarvinen T.L., Sievanen H., Khan K.M., Heinonen A., and Kannus P.Shifting the focus in fracture prevention from osteoporosis to fallsBritish Medical Journal2008Vol. 336124126
Joyner M.J.Wasting away in Mars-AritavilleJournal of Physiology2010Vol. 5884071
Kreitner K.-F., Hansen M., Schadmand-Fischer S., Krummenauer F., and Runkel M.Low field MRI of the knee joint: results of a prospective arthroscopically controlled studyRofo19991703540
Lang T., LeBlanc A., Evans H., Lu Y., Genant H., and Yu A.Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflightJournal of Bone and Mineral Research2004Vol. 1910061012
LeBlanc A.D., Spector E.R., Evans H.J., and Sibonga J.D.Skeletal responses to space flight and the bed rest analog: a reviewJournal of Musculoskeletal and Neuronal Interactions200773347
Li G. and Mechefske C.Structural-acoustic modal analysis of cylindrical shells: application to MRI scanner systemsMagnetic Resonance Materials in Physics Biology and Medicine2009Vol. 22353364
Merhemic Z., Breitenseher M., Trattnig S., Happel B., Kukla C., Rand T., and Imhof H.MRI of the ankle joint. Comparison of the 1.0T and the 0.2T unitsRadiologe1999Vol. 394146
NIHConsensus Development Panel on Osteoporosis Prevention, Diagnosis, and TherapyJournal of the American Medical Society2001Vol. 285785795
Obenaus A., Huang L., Smith A., Favre C.J., Nelson G., and Kendall E.Magnetic resonance imaging and spectroscopy of the rat hippocampus 1 month after exposure to 56Fe-particle radiationRadiation Research2008Vol. 69149161
Obenaus, A., Dilmac, N., Tone B., Tian, H.R., Hartman, R., Digicaylioglu, M., Snyder, E.Y., and Ashwal, S. 2010. Long-term magnetic resonance imaging of stem cells in neonatal ischemic injury. Annals of Neurology, Vol. 69, pp. 282–291.
Orrison W.W., Stimac G.K., Stevens E.A., LaMasters D.L., Espinosa M.C., Cobb L., and Mettle F.A.Comparison of CT, low-field strength MR imaging and high-field strength MR imaging. Work in progressRadiology1991181121127
Raich H. and Blümler P.Design and construction of a dipolar Halbach array with a homogeneous field from identical bar magnets: NMR MandhalasConcepts in Magnetic Resonance Part B: Magnetic Resonance Engineering2004231625
Sargsyan A.E., Dulchavsky A.G., Adams J., Melton S., Hamilton D.R., and Dulchavsky S.A.Ultrasound detection of simulated intra-ocular foreign bodies by minimally trained personnelAviation, Space, and Environmental Medicine2008Vol. 795861
Sarty G. and Kendall E.Self-diffusion maps from wavelet de-noised NMR imagesJournal of Magnetic Resonance, Series B1996Vol. 1115060
Sharp J.C. and King S.B.MRI using radiofrequency magnetic field phase gradientsMagnetic Resonance in Medicine201063151161
Silberstein M., Tress B.M., and Rossiter S.Evaluation of the diagnostic accuracy of MR imaging at 0.3T, based on clinical follow-up of 3262 examinationsAustralasian Radiology1993Vol. 37141146
Sornay-Rendu E., Boutroy S., Munoz F., and Delmas P.D.Alterations of cortical and trabecular architecture are associated with fractures in postmenopausal womenpartially independent of decreased BMD measured by DXA: the OFELY study200722,425433
Souza, K.A., Ilyin, E.A., Sychev, V.N., and Jahns, G.C. 2009. Biological research ins. In U.S. and Russian Cooperation in space biology and medicine V: Space biology and medicine, pp. 1–43, American Institute of Aeronautics and Astronautics, Reston, Virginia and Nauka Press, Moscow.
SpaceX 2009. Falcon 9 User's guide, Space Exploration Technologies Corp., Hawthorne, CA, USA.
Tofts, P. (ed) 2003. Quantitative MRI of the brain: Measuring changes caused by disease. John Wiley & Sons, Chichester, England.
Weirauch, A.F. 2007. Presurized payloads interface requirements document: International space station program. NASA SSP 57000, revision H.
Wosik, J., and Schneider, S. 2001. Compact MRI systems for long-duration space flights. In ISSO 2000–2001 Annual Report, pp. 68–70.

Information & Authors

Information

Published In

cover image Canadian Aeronautics and Space Journal
Canadian Aeronautics and Space Journal
Volume 58Number 1April 2012
Pages: 60 - 68

History

Received: 6 February 2011
Accepted: 9 March 2012
Published online: 7 May 2012

Authors

Affiliations

Gordon E. Sarty
Departments of Psychology, Obstetrics and Gynecology, Medical Imaging, Physics and Engineering Physics, Biomedical Engineering Division, 9 Campus Drive, University of Saskatchewan, Saskatoon, SK, Canada S7N 5A5.
André Obenaus
Departments of Biophysics and Bioengineering, Radiation Medicine, Radiology and Pedatrics, Loma Linda University, 11175 Campus St., CSPA1010, Loma Linda, CA 092324, USA.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

There are no citations for this item

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Aeronautics and Space Journal

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share with email

Email a colleague

Share on social media