Integration of Spatial Heterodyne Spectroscopy with the Stratospheric Wind Interferometer For Transport studies (SWIFT)

Publication: Canadian Aeronautics and Space Journal
27 July 2012

Abstract

The Doppler Michelson Interferometer (DMI) approach developed for atmospheric wind measurement was first flown as the WIND Imaging Interferometer (WINDII), launched on NASA's Upper Atmosphere Research Satellite in 1991. WINDII obtained global winds over the altitude range of 80–300 km, using airglow emission as a Doppler target. The same concept was proposed for the Stratospheric Wind Interferometer For Transport studies (SWIFT), destined for flight on the CSA Chinook mission. SWIFT was intended for measurement of winds in the altitude range of 20–45 km where the only available emission for Doppler measurement is thermal radiation from minor constituents. An ozone line at about 8.8 µm was adopted as the target. The challenge is to isolate this line from other lines in this complex spectrum to measure its phase with sufficient accuracy. The demands on the filter fabrication and the knowledge of its characteristics in flight, including thermal drifts, became a major consideration. Spatial Heterodyne Spectroscopy (SHS) also uses a Michelson interferometer but with the mirrors replaced by diffraction gratings; this produces a spatial interferogram across an imaging detector for a narrow spectral band. By using a longer path difference in one arm, as is done in DMI, in a configuration called DASH (Doppler Asymmetric Spatial Heterodyne), it is possible to measure the phases of each of these lines in the band separately, which significantly reduces the demands on filter fabrication and knowledge. A development model is now being implemented within the Centre for Research in Earth and Space Science at York University (CRESS); the concept is described and a report on progress is provided.

Résumé

L'approche basée sur l'utilisation de l'interféromètre de Michelson à imagerie Doppler (DMI) développée pour la mesure du vent atmosphérique a été mise en service au départ dans le cadre du déploiement de l'interféromètre WINDII (WIND Imaging Interferometer) à bord du satellite UARS (Upper Atmosphere Research Satellite) de la NASA lancé en 1991. WINDII a acquis des données sur les vents à l’échelle du globe à une altitude s’étendant de 80–300 km en utilisant l’émission de la luminescence atmosphérique comme cible Doppler. Ce même concept a été proposé pour les études SWIFT (Interféromètre des vents stratosphériques pour des études de transport), un interféromètre développé pour lancement dans le cadre de la mission Chinook de l'ASC. L'interféromètre SWIFT était conçu pour mesurer les vents à une altitude variant de 20–45 km, où la seule émission disponible pour la mesure Doppler est le rayonnement thermique à partir de constituants mineurs. Une ligne dans le spectre de l'ozone située à environ 8,8 µm a été adoptée comme cible. Le défi est d'isoler cette ligne des autres lignes dans ce spectre complexe afin de mesurer sa phase avec une précision suffisante, Dans ce contexte, les exigences de fabrication du filtre et la connaissance de ses caractéristiques en vol, dont les dérives thermiques, ont constitué un enjeu important. La spectroscopie hétérodyne spatiale (SHS) utilise aussi un interféromètre Michelson mais les miroirs sont remplacés par des réseaux de diffraction; ceci produit un interférogramme spatial à travers un détecteur imageur dans une bande spectrale étroite. En utilisant une différence de parcours plus longue dans l'un des bras, comme dans le cas du DMI, dans une configuration appelée DASH (Doppler Asymmetric Spatial Heterodyne), il est possible de mesurer les phases de chacune de ces lignes séparément dans la bande, ce qui réduit de façon significative les exigences quant à la fabrication et à la connaissance du filtre. Un modèle de développement est présentement en cours d’élaboration au CRESS (Centre for Research in Earth and Space Science) à l'Université York; on décrit le concept et on présente un rapport sur l'avancement des travaux.
[Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

References

Connes P. Spectromètre interférential a selection par l'amplitude de modulation Journal de Physique et le Radium 1958 19 215 -222
Englert C.R., Babcock D.D., and Harlander J.M. Doppler asymmetric spatial heterodyne spectroscopy (DASH): concept and experimental demonstration Applied Optics 2007 46 7297 -7307
Harlander J., Reynolds R.J., and Roesler F.L. Spatial heterodyne spectroscopy for the exploration of diffuse interstellar emission lines at far-ultraviolet wavelengths Astrophysical Journal 1992 396 730 -740
Harlander J.M., Roesler F.L., Englert C.R., Cardon J.G., Conway R.R., Brown C.M., and Wimperis J. Robust monolithic ultraviolet interferometer for the SHIMMER instrument on STPSat-1 Applied Optics 2003 42 2829 -2834
Harlander J.M., Englert C.R., Babcock D.D., and Roesler F.L. Design and laboratory tests of a Doppler Asymmetric Spatial Heterodyne (DASH) interferometer for upper atmospheric wind and temperature observations Optics Express 2010 18 25 26430 -26440
Hilliard R.L. and Shepherd G.G. Wide-angle Michelson interferometer for measuring Doppler line widths Journal of the Optical Society of America 1966 56 362 -369
Lin, Y. 2010. Instrument development for spatial heterodyne observations of water, Ph.D. dissertation, York University.
Rahnama P., Rochon Y.J., McDade I.C., Shepherd G.G., Gault W.A., and Scott A. Satellite measurement of stratospheric winds and ozone using Doppler Michelson interferometry. Part I: Instrument model and measurement simulation Journal of Atmospherics and Oceanic Technology 2006 23 6 753 -769
Rahnama, P. 2010. Mission simulation and instrument design for the Stratospheric Wind Interferometer For Transport studies (SWIFT) instrument, Ph.D. Dissertation, York University.
Rochon Y.J., Rahnama P., and Mcdade I.C. Satellite Measurement of stratospheric winds and ozone using Doppler Michelson interferometry. Part II: Retrieval method and expected performance Journal of Atmospherics and Oceanic Technology 2006 23 770 -784
Shepherd G.G., Gault W.A., Miller D.W., Pasturczyk Z., Johnston S.F., Kosteniuk P.R., Haslett J.W., Kendall D.J., and Wimperis J.R. WAMDII: Wide Angle Michelson Doppler Imaging Interferometer for Spacelab Applied Optics 1985 24 1571 -1584
Shepherd G.G., Thuillier G., Gault W.A., Solheim B.H., Hersom C., Alunni J.M., Brun J.-F., Brune S., Charlot P., Desaulniers D.-L., Evans W.F.J., Girod F., Harvie D., Hum R.H., Kendall D.J.W., Llewellyn E.J., Lowe R.P., Ohrt J., Pasternak F., Peillet O., Powell I., Rochon Y., Ward W.E., Wiens R.H., and Wimperis J. WINDII – The Wind Imaging Interferometer on the Upper Atmosphere Research Satellite Journal of Geophysical Research 1993 98 10,725 -10,750
Shepherd G.G., McDade I.C., Gault W.A., Rochon Y.J., Scott A., Rowlands N., and Buttner G. The Stratospheric Wind Interferometer For Transport studies (SWIFT) Advances in Space Research 2001 27 6/7 1071 -1079
Shepherd, G.G. 2002. Spectral imaging of the atmosphere, Academic Press, Amsterdam.
Zhang S.P., McLandress C., and Shepherd G.G. Satellite observations of mean winds and tides in the lower thermosphere. Part 2: WINDII monthly winds for 1992 and 1993 Journal of Geophysical Research 2007 112 D21 Art. No. D21105

Information & Authors

Information

Published In

cover image Canadian Aeronautics and Space Journal
Canadian Aeronautics and Space Journal
Volume 58Number 02August 2012
Pages: 115 - 121

History

Received: 15 September 2010
Accepted: 24 May 2012
Version of record online: 27 July 2012

Authors

Affiliations

G.G. Shepherd
Centre for Research in Earth and Space Science, York University, 4700 Keele Street, Toronto, ON M3J 1P3.
B.H. Solheim
Centre for Research in Earth and Space Science, York University, 4700 Keele Street, Toronto, ON M3J 1P3.
S. Brown
Centre for Research in Earth and Space Science, York University, 4700 Keele Street, Toronto, ON M3J 1P3.
W.A. Gault
Centre for Research in Earth and Space Science, York University, 4700 Keele Street, Toronto, ON M3J 1P3.
I.J. Miller
LightMachinery, 80 Colonnade Road N, Unit 1, Nepean, ON K2E 7L2.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

There are no citations for this item

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Aeronautics and Space Journal

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share on social media