Fine attitude maneuvering by reaction wheel via sliding mode speed driver

Publication: Canadian Aeronautics and Space Journal
17 March 2014

Abstract

The objective of this paper was to design a set of proper speed controllers for reaction wheels in the presence of unknown coulomb friction and parametric uncertainties. The controller goal was to change the rotational speed of reaction wheels to adjust the satellite to a desired attitude. The mathematical model of a satellite that utilizes three reaction wheels as actuators was developed by angular kinematics and kinetic equations. Variable-structure control theory was then applied on the reaction wheel via a real-time microcontroller-based Hardware in the Loop. The simulated satellite response to wheel speed shows that the sliding mode speed controller is effective, and a small attitude angle could be tracked more effectively than with a Proportional–Integral–Derivative speed controller.

Résumé

L'objectif de cette étude est de concevoir un ensemble de contrôleurs de vitesse appropriés pour roues de réaction en présence de frottement de Coulomb inconnu et d'incertitudes paramétriques. Le but du contrôleur consiste à modifier la vitesse de rotation des roues de réaction pour ajuster l'attitude d'un satellite de façon souhaitée. Le modèle mathématique d'un satellite qui utilise trois roues de réaction comme actionneurs est développé par cinématique angulaire et des équations cinétiques. La théorie de la commande à structure variable est ensuite appliquée par simulation « matériel dans la boucle » de la roue de réaction par l'intermédiaire d'un microcontrôleur en temps réel. La réponse simulée du satellite à la vitesse des roues indique que le contrôleur de vitesse en mode glissant est efficace, et qu'un petit angle d'attitude peut être suivi de façon plus efficace qu'avec un régulateur de vitesse PID « Proportional–Integral–Derivative ».
[Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

References

Astrom, K. and Hagglund, T. 1995. PID Controllers: Theory, Design, and Tuning, 2nd. ed. Instrument Society of America Research Triangle Park, NC.
Fulcher, R. 1969. A Brushless Dc Torquer-Driven Reaction Wheel for Spacecraft Attitude Control, Goddard Space Flight Center Greenbelt, Md. National Aeronautics and Space Administration Washington, D. C.
John B.S.J. Reaction wheel low-speed compensation using a dither signal Journal of Guidance Control and Dynamics 1993 16 4 617 -622
Jung, D. and Tsiotras, P. 2003. A 3-dof experimental test-bed for integrated attitude dynamics and control research. In AIAA Guidance, Navigation and Control Conference, Austin, TX. aIAA Paper 03-5331.
Koshkouei, A.J. and Burnham, K.J. 2006. Control of DC Motors Using Proportional Integral Sliding Mode, Control Theory and Applications Centre. Coventry University, Coventry UK.
Kristiansen R., Egeland O., and Johan P. A comparative study of actuator configurations for satellite attitude control Modeling, Identification and Control 2005 26 4 201 -219
Ninomiya, K., Ogawara, Y., Tsuno, K., and Akabane, S. 1988. High Accuracy Sun Sensor Using CCDs, Technical Papers in AIAA Guidance, Navigation and Control Conference, Minneapolis. Part 2, pp. 1061–1070. (A88-50160-21-08)
Nudehi, S.S., Farooq, U., Alasty, A., and Issa, J. 2008. Satellite attitude control using three reaction wheels, 2008 American Control Conference, Westin Seattle Hotel, Seattle, Washington, USA.
Olsson H., Åström K.J., Canudas de Wit C., Gäfvert M., and Lischinsky P. Friction Models and Friction Compensation European Journal of Control 1998
Ptak, A. and Foundy, K. 1998. Real-time Spacecraft Simulation and Hardware-in-the loop Testing. Proceedings of the 4th IEEE Real-time Technology and Applications Symposium, pp. 231–236.
Shi, T., Lu, N., Zhang, Q., and Xia, C. 2008. Brushless DC Motor Sliding Mode Control with Kalman Filter, ICIT 2008. IEEE International Conference, 978-1-4244-1705-6.
Sidi, M. 1997, Spacecraft dynamics and control: a practical engineering approach. Cambridge University Press, Cambridge.
Slotine, J.-J.E. and Li, W. 1991. Applied Nonlinear Control. Prentice Hall Englewood Cliffs, New Jersey.
Wanga B., Gonga K.E., Yangb D.I., and Lic J. Fine attitude control by reaction wheels using variable-structure controller Acta Astronautica 2003 52 613 -618

Information & Authors

Information

Published In

cover image Canadian Aeronautics and Space Journal
Canadian Aeronautics and Space Journal
Volume 59Number 03December 2013
Pages: 71 - 80

History

Received: 14 July 2011
Accepted: 10 October 2013
Version of record online: 17 March 2014

Authors

Affiliations

Mohammad Hossein Beheshti
Department of Aerospace Engineering, K.N. Toosi University of Technology, Tehran, Iran.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

There are no citations for this item

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Aeronautics and Space Journal

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share on social media